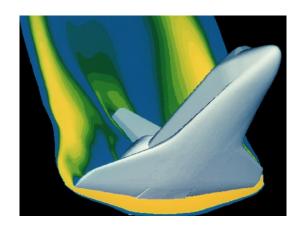
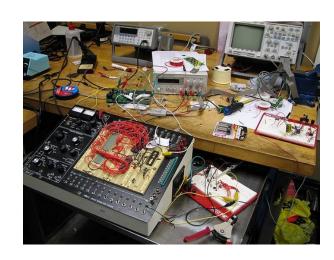
# Forward Engineering Design


DR. TAREK A. TUTUNJI


REVERSE ENGINEERING
PHILADELPHIA UNIVERSITY,
JORDAN
2015

#### Introduction

- In order to better understand the concepts and methods used in Reverse Engineering, it is necessary to review Engineering Design, which we refer to as forward design.
- In this presentation, the forward design is described as a seven step process.


# What is Design?













# Design

- Design is the process of originating and developing a plan for a new product.
- Engineering design is a scientific philosophy and therefore might vary between different schools of thought.
- Designing normally requires considering the product functionality which usually requires considerable research, thought, modeling, interactive adjustment, and re-design.


## **Engineering Design Process**

 The Accreditation Board for Engineering and Technology defines the engineering design as

The process of devising a system, component or process to meet desired needs. It is a decision-making process (often iterative), in which the basic sciences, mathematics, and engineering sciences are applied to convert resource optimally to meet a stated objective. Among the fundamental elements of the design process are the establishment of objectives and criteria, synthesis, analysis, construction, testing, and evaluation.


### Seven Design Steps

- 1. **Define** the Problem
- 2. **Gather** Information
- 3. **Propose** Solutions
- 4. **Study** the Solutions
- 5. Analyze and Design the chosen solution
- 6. Implement the Design
- 7. Evaluate Performance



#### 1. Define the Problem

- Society discovers a need and then presents that need to the engineering firm.
- Engineers must understand the customer needs and market requirement in order to establish a clear goal using a set of objectives and constraints



 A clear identification of the problem is the first step in any design process.

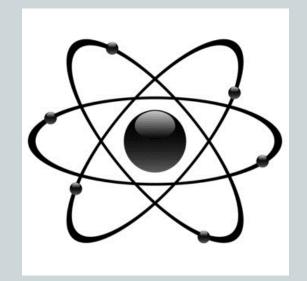
## 2. Gather Information

- Collect information through literature review
- Conduct thorough research about the problem
- Study all relevant products that might already exist in the market



# 3. Propose Solutions

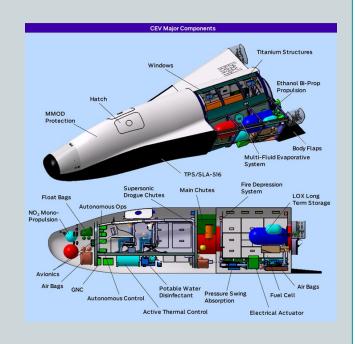
- Find possible solutions through Brainstorming, free and creative thinking
  - Don't think about feasibility at this stage




- Several designs should be proposed
- A list of the possible solutions is made and the pros and cons of each solution are discussed



## 4. Study the Solutions


- Evaluate all the proposed designs detailing the strengths and weaknesses
- The study/analysis is composed of
  - Feasibility Study
    - Eliminate ideas without consuming time
  - Preliminary Design
    - ▼ General design



- Choose a Solution (Design)
- Might need to re-visit the design objective

# 5. Analyze and Design

- Use Engineering and Math skills to study the proposed design in order to transform it to reality
- All components / subsystems should be analyzed in details
- Hand Calculations, Modeling and Simulations, and Computer Aided Design is used
- Communicate with management and manufacturing
- Design modification might arise again



## 6. Implement the Design

 Supply working drawings, documentation, and plans for manufacturing



 Specify manufacturing tools and processing to be used

Build Prototype

## 7. Evaluate the Performance

- Test the prototype according to customer specifications
- Take it one step further and test to harsh environment

 Re-visit the original design if needed



#### Conclusion

- Engineering design is an iterative process focused on originating a product.
- The design includes research, thought, modeling, prototype building and interactive adjustment.
- A 7-step design process was described. The steps are: problem definition, gathering information, proposal of solutions, study solution, analysis, implementation, and performance evaluation